
ABSTRACT

The Adaptive Work-Centered User Interface Technology
(ACUITy) program and architecture uses semantic models
captured in Web Ontology Language (OWL) repositories as the
basis for adaptive, extensible human-computer interfaces in
open-ended problem solving domains. Central to the adaptive
nature of ACUITy is its ability to implement several forms of
learning. In this paper we will explore different kinds of
learning and describe how the ACUITy implementation has
realized some of these learning methods and enables future
implementation of others. ACUITy will soon be released to
Open Source with the hope that others will find this technology
useful and will contribute to its future improvement.

Keywords: learning, adaptive user-interface, ontology,
semantic modeling, decision support.

1. INTRODUCTION

Over the past three years, we have developed Adaptive Work-
Centered User Interface Technology (ACUITy) using a model-
based approach [1,2,3]. More specifically, we have constructed
semantic models of the user, the human-computer interface, and
of problem solving work domains using the Web Ontology
Language (OWL) [4] as the model representation paradigm and
Jena as the repository (see http://jena.sourceforge.net/). Our
most extensive modeling work to-date has been of the human-
computer interface, where the model provides both a shared
semantics through which dialogue between the computer and
the human can occur and a framework for easy extension to
domain-specific applications. The ACUITy framework not only
models the human-computer interface, it also “executes” the
model, in essence, implementing the modeled application.
Bundled in the human-computer interface model is the ability to
adapt the content and screen layout to user preferences and the
type of problem that the user is attempting to solve. For
example, the presentation (rendering) of information via graph
and table displays is in the basic model. Bundled in with these
presentations is the ability for the user to change the coloring,
layout, etc. of any rendered graph or table at runtime. The
system accumulates instance data from changes the user does or

does not make to the display: for example, changing chart types
or colors, resorting or hiding data in a table, or bringing new
information into the focus of the display.

During the course of our work, we have explored the use of an
OWL model as the basis of learning from instance data using
several different algorithms and have hypothesized the
usefulness of other kinds of learning. In this paper we report on
both what we have done and what we think is feasible and
worth doing in the future. We find semantic models to be a
natural framework in which to learn in open-ended, decision
support environments.

2. A CONCEPTUAL MODEL OF LEARNING

Human learning is based on sensory perception. From these
perceptions are derived increasingly complex mental models,
including categorizations [5,6,7,8]. Learning includes natural
language constructs, and at some point we are able to learn
indirectly through communication with other people and not just
from our own first-hand observations. Such second-hand
learning depends upon shared semantics—upon largely aligned
ontologies in the minds of the participants.

Computational models--models externalized in some artifact
and processed by a machine to produce an output--are [at least
initially] constructed by people and are based upon their mental
models. The semantic models underlying a computational
model may be more or less explicit. The vision of the Semantic
Web is to make the semantics of information on the Web
explicit—comprehensible to both people and computers. To this
end, OWL supports ontologies that are modular and extensible
and in this sense are similar to people’s mental ontologies; each
has his or her own version that is largely an extension of a
shared ontology "owned" by a larger community.

In this context, we discuss several different kinds of learning
that can occur over an ontological model. The simplest has to do
with analyzing instance data. Given homogenous data (that is,
attributes of instances of some meaningful grouping, e.g., the
weights of apples in a basket), we can perform various

Using an OWL Repository for
Inductive and Abductive Learning

Andrew CRAPO
GE Global Research, 1 Research Circle

Niskayuna, NY 12309, USA

Amy ARAGONES
GE Global Research, 1 Research Circle

Niskayuna, NY 12309, USA

Jeanette BRUNO
GE Global Research, 1 Research Circle

Niskayuna, NY 12309, USA

Marc GARBIRAS
GE Global Research, 1 Research Circle

Niskayuna, NY 12309, USA

http://jena.sourceforge.net/).

computations over the data. We might do statistical analysis,
e.g., determine the average weight and standard deviation of the
apples in a basket or determine the median weight of the apples
in the basket. The grouping criteria can of course vary. Rather
than apples in a basket, it might be apples from Washington
State, or apples sold by Wal-Mart during January 2004. This
kind of learning from instance data is a form of logical
induction (not to be confused with mathematical induction,
which is deductive in nature).

In our analysis of ACUITy instance data regarding human-
computer interactions, we have so far found the following to be
useful:

1. the average value of a numerical attribute of a group of
instances

2. the most frequent value of an attribute of a group of
instances

3. the most recently used/specified value of an attribute of
a group of instances

We have primarily used these computed values as the learned
default values to be assigned to attributes of a new instance of
the specified group (class). For example, if this decision maker
has most frequently preferred to see trend data regarding mean
time between failure as a line graph in the upper-left corner of a
particular display, then a reasonable default is to encode a new
trend data set as a line graph and display it in the usual location
for that type of display.

Another type of inductive learning is the extension of an
ontological category to finer-grained subclasses. This is
illustrated by the way that children learn [9]. To a child learning
to talk, all animals often are initially grouped into a single class.
With experience and the prompting of devoted tutors, the
animal class (whatever it might be called by the child) gets
refined into subclasses; cows and horses, dogs and cats. For that
child who pursues a doctorate in zoology, the classifications are
extended far beyond those used by the average member of
society. Subdivision of a class into a set of subclasses occurs
when the observable attributes of the members of the class are
found to form clusters and when the clustering is of interest to
the observer. As technology increases observational capability,
alternate classifications become feasible.

A substantially different type of learning occurs when reasoning
over a model fails to produce the expected results. This kind of
learning is sometimes called abduction, a process described by
Peirce as a way of generating new ideas [10]. Abduction looks
for a pattern in a phenomenon, but then it goes on to first
suggest and then test a hypothesis or theory. It is in the area of
hypothesis generation that people sometimes show the most
brilliance over computer-based systems, sometimes formulating
astonishingly insightful theories based on as few as one
observation. It seems quite likely that this type of learning is
based on reasoning by analogy and other mechanisms of
exploiting the broader semantic networks of experience and
mental models of the human. It is plausible that a semantic
network of information over which abduction can occur in an
artifactual system makes it more likely that useful patterns in
complex information can be used for hypothesis-generation.

Abduction is very similar to reasoning by analogy, and in fact
the hypothesis generation seems particularly associative or
analogous in nature. Rather than generating a hypothesis from
nothing (which poses a problem for a symbolic logic system),
Hoffman [11] has theorized that a hypothesis is selected from an
infinite set of possible theories. (Fortunately we do not have to
generate all members of the set before we can select one to test.)

The use of relevant knowledge and experience in the problem
domain provides the human with “instinctive power” leading to
hunches and leaps of intuition. It has been observed that the
inductive step of abduction is not continually active, either in
humans or animals, but is triggered by a surprising observation.
For an observation to be surprising, it must in some way violate
the expectations of the observer, which are derived from his
models. It is the resulting search for a theory creating an
expectation compatible with both the new and the old
observations that generates the hypothesis.

No current theory of hypothesis generation seems wholly
satisfying, but it is plausible that the process depends heavily
upon the organization of experiences and beliefs (the models)
that are represented in the memory of the cognitive system. We
make the process more formal as follows. Suppose that a
cognitive system believes a theory H, which, in situation Sn
described in all ways believed to be relevant by the parameter
set Xn, generates an expectation E of observations On. This is
informally represented as:

describes(Sn, Xn) and H(Xn) => E(On)

Note that a parameter of the set Xn might be a graph segement
with depth greater than 1. We might suppose that the theory H
was learned from previous situations classified by the cognitive
system as being similar to Sn, i.e. {S1, S2, … , Sn-1}. (Or more
precisely, the cognitive system classified the previous situations
{S1, S2, … , Sn-1}as being similar and generating H and
subsequently, upon being presented with the current situation
Sn, identified it as belonging to the same class of situations.)
Now suppose further that in the current situation Sn, the actual
observations On’ are surprising, i.e. On’ ≠ On in some significant
way.

The cognitive system might respond by looking for differences
between the current situation Sn and the set of previous
situations {S1, S2, … , Sn-1} used to generate H. One form this
search might take is the consideration of an expanded parameter
set X+Y where Y consists of one or more possible descriptors
of situations {S1, S2, … , Sn-1, Sn} and where Y1=Y2=Y3=
…=Yn-1≠Yn. In other words, Y represents a significant
difference between this situation and the previous situations.
The search for Y would be informed by the cognitive system’s
ontology and deep understanding of what parameters not
previously believed important are most likely to have relevance,
i.e. are most likely to be involved in some causal chain leading
to On’. Our mental models may play a crucial role in this search.
Successful identification of a Y would lead to a revised theory
H’ such that

describes(Si, Xi+Yi) and H’(Xi+Yi)=>E(Oi) for i=1 to n-1

and

describes(Sn, Xn+Yn) and H’(Xn+Yn)=>E(On’)

Other methods of hypothesis generation can be envisioned that
leverage the cognitive system’s models. (For an example, see
Thagard & Shelley [12].) These might include looking at
observations that are similar in some way to the surprising
observation, looking at causations (including reasons, purposes,
and goals of other cognitive systems, e.g. enemies) that might
produce these or similar observations, or looking at causations
in other classes of situations that are not too distant by some
measure of similarity (e.g., graph distance) from the current
situation. The meanings of purpose, reason, goal, and situation

as used here are upper-level ontological concepts and an
artificial cognitive system capable of this kind of learning will
need to have representations and models for these kinds of
abstract entities.

3. USING OWL REPOSITORIES AS A FRAMEWORK
FOR LEARNING

OWL, with roots in the Description Logics community [13],
stores both generalizations, e.g., class and property definitions,
and instance data. The former is often referred to as the tbox or
terminology. The latter is referred to as the abox. Instance data
stored in an OWL repository is always semantically tagged, and
therefore has an explicit semantic context. This characteristic,
combined with a powerful query language such as SPARQL
[14], provides a very powerful mechanism for data exploration.
In other words, the ontological data is stored as a graph (in the
mathematical sense—it may or may not be displayed as a visual
graph). SPARQL is a graph query language. One can retrieve
data of arbitrary semantic complexity. Drawing on an example
from maintenance planning and logistics, one can construct
queries of varying “reach” into the semantic network.

• Find all assets of a certain type
• Find all assets of a certain type that operate in a particular

environment
• Find all assets of a certain type that operate in a particular

environment and were serviced in the last year
• Find all assets of a certain type that operate in a particular

environment, were serviced in the last year, and received a
particular upgrade.

The graph structure of an ontology and the flexible reach of a
graph query language provide valuable support for the various
forms of learning discussed in the previous section. In the case
of computing learned attribute values over the instances of a
group, the group can be flexibly defined by a graph query that is
grounded in class and property definitions in the application
ontology and/or higher-level imported ontologies. In the case of
tbox extension through induction of finer-grained subclasses,
graph queries retrieve desired sets of data that can be analyzed
for clustering or other patterns. In the abductive reasoning
scenario, graph queries over the domain ontology allow
exploration of modified hypotheses. For example, suppose that
we have a group of engineers who use a maintenance and
logistics planning application to maintain situational awareness
of the status of a fleet. Suppose that an original hypothesis
stated that the users of the planning system prefer to see a “red-
yellow-green dashboard” display that visually summarizes the
fleet performance. Suppose now that a new user, who happens
to work for the service contract management department,
changes the visualization from the dashboard format to a table
that reports the raw availability statistics for that fleet (for
example, to verify contract compliance). The system could see
this anomaly and pose a modified hypothesis that users from the
engineering department prefer to see the dashboard display and
users from contract management department prefer to see a data
table. Thus, the system proposes two new subclasses of user,
distinguished by the department for which they work, and these
users will now by default receive information displays tailored
per those preferences. Future interactions with each subclass of
user are then monitored to verify or reject the new hypothesis.

Note that in the case of abductive learning, the instance data
necessary to test a hypothesis may or may not be present at the
time of hypothesis generation. (For example, if an engineer
from the above example happens to be color blind and changes
his dashboard display to Red-Yellow-Purple but color blindness

is not a property in the user model.) Pragmatic considerations
will often dictate that observations not deemed relevant to the
model at hand may not be made or may not be stored.
Consequently, generation of an interesting hypothesis may
dictate gathering of new observations that include the additional
parameters of the extended hypothesis or it may cause
observations to be stored which were formerly “forgotten.”

4. ACUITY: A CASE STUDY IN LEARNING FROM OWL
INSTANCE DATA

ACUITy provides a domain-independent shared semantics for
mixed-initiative decision support in open-ended problem
domains, both in terms of the user-interface concepts and in
terms of general problem-solving concepts. It also provides an
architecture that uses this metadata to take some direct action;
for example, to implement changes in the composition of a user
interface, or to execute some other behavior via scripts. In this
application space, there is considerable opportunity to improve
the usability and effectiveness of a system by enabling it to
learn after it is deployed.

The ACUITy framework views decision support application
development as a two-step “finish the design” process. First, the
application developer extends the domain-independent ACUITy
models of human-computer interaction and work domain
information to the specific domain of interest, identifying the
kinds of problems to be solved, the kinds of information
relevant to those problems, and a basic set of information
“vantages” (views) likely to be useful to a decision maker. Then
the end-user is encouraged to finish the design by customizing
information content, layout, and display parameters, e.g., graph
type, colors, and ordering.

Because OWL does not support default values, ACUITy uses
the rdf:seeAlso annotation property to associate instances of the
class DefaultValue with the class to which the default is to
apply (see Figure 1). When a new instance of a class is created,
a special-purpose reasoner looks for a seeAlso property on the
class with a value of type DefaultValue (or a subclass thereof).
If present, the instance of DefaultValue is used to provide an
initial value of the specified property for the new instance. What
is important to the current discussion is the nature and use of a
particular subclass of DefaultValue called
LearnedDefaultValue. A LearnedDefaultValue also specifies
the value to be used as the default if a learned value cannot be
calculated.

In the current implementation of ACUITy, a
LearnedDefaultValue has the following properties used by the
special-purpose reasoner:

• valueCalculatedBy, with range Script, which identifies the
specific algorithm to use to calculate the learned value

• dataSetDefinedBy, with range Script, which identifies the
algorithm to determine the set of data from which to learn

• userPreference, which, if true, will collect similar instances
of the class created for/by this user as the data set

• minimumSampleSize, which specifies the minimum
amount of relevant instance data which must be found
before a learned default will be calculated

• thresholdFrequency, which indicates, for applicable
algorithms, the preponderance of usage necessary for a
learned value to be used. For example, if the threshold is
75% and a given sample for most-frequent value is evenly
split between “green” and “purple,” the specified default
value will be used and not the calculated value.

Note that the Boolean “userPreference” is a special-purpose
shorthand way of specifying the data set to be all instances of
the subject class created by the current user. If a value of the
property “dataSetDefinedBy” is given, a much more flexible
definition of the data set over which learning can occur is
possible. For example, the data set might be instances created
by all users in the same role, by users in the same role with the
same educational background, or any other expressible data
selection criteria. While not currently implemented, there could
be multiple selection criteria ordered so that if there is
insufficient data at one level the next-level learning algorithm is
used. In fact, the user might be allowed to specify the algorithm
for data selection, possibly choosing to look at decision criteria
and outcomes over a peer group to identify the “best
performers,” enabling the propagation of “best practices” to the
user community.

Next steps in implementing ontology-based learning include
supporting induction and abduction in open-ended problem
domains. As we gain more experience with the ACUITy
environment, we anticipate extending it with various learning
modules. With our approach we can develop the ability to
modify the standard behavior of an ACUITy-delivered
application by recognizing changing patterns in the ontologies
and instance data.

For example, we envision implementing a standard learning
routine to emulate the behavior previously described in the
graph versus table display example. This learning module

would look for “large” style or content changes to the
presentation such as changing a general presentation nature or
including or removing information content. When such changes
occur, the learning module would look for discriminating
characteristics in other parameters that coincide with the
change, such as a difference in the users’ communities. It
would then “propose” a new hypothesis, possibly by adding
new subclasses, and then analyze subsequent user behavior to
validate or reject the hypothesis. This validation/rejection phase
would, across subsequent uses of the application, analyze the
users’ behavior to find contradictions to the hypothesis (e.g.,
users from the new user community using the old display). If
sufficient contradictions were found, it would withdraw the
hypothesis (possibly removing new subclasses). If usage
patterns were consistent with the modified model, the new or
modified hypothesis would grow in level of confidence.

As mentioned above, a sufficiently extensive shared semantics
allows second-hand learning to occur as the learner is “taught”
new concepts that extend existing models. We are working on
an ACUITy Editor that will allow an existing application to be
“taught” by developers and even end-users. The ACUITy Editor
will make it easier and more intuitive to extend the application
design by creating new concepts as natural extensions of the
existing domain ontology. Once second-hand learning is
enabled, we can extend learning analysis to monitor users' usage
of and reactions to new model extensions.

Figure 1: Default Values of a Class Properties and RangesFigure 1: DefaultValue Properties and Ranges

5. CONCLUSIONS

The ACUITy environment is in its infancy, but we feel it is a
promising start toward achieving the vision of its name: an
Adaptive Work-Centered User Interface TechnologY. In this
work we have combined:

• a tight coupling of the higher order semantics of domain-
independent ontological models of human-computer
interaction and problem solving with the implementation
of an application's domain-specific models,

• user-based customizations/modifications to the
application’s model as intrinsic behavior in an ACUITy
delivered application,

• the memory of these changes (built into the OWL
modeling paradigm), and finally

• explicitly included learning as an extensible capability
within our human-computer interface model.

The learning capability we have modeled positions the
environment to truly deliver adaptive behavior in ACUITy-
based applications. Our human-computer interface model
specifically provides for extending it with new learning
capabilities. Later this year ACUITy will be released to the
Open Source community in the hopes that the technology will
be found useful to a wide spectrum of practitioners and that the
larger community will be willing to further extend and refine
the many aspects of the ACUITy architecture, including its
learning capabilities and potential.

6. ACKNOWLEDGEMENT

This work was funded by the Air Force Research Laboratory,
Wright Patterson AFB, and by the General Electric Company
under a dual-use program, contract number F33615-03-2-6300.

7. REFERENCES

[1] Aragones, Amy, Jeanette Bruno, Andrew Crapo, and Marc
Garbiras, "An Ontology-Based Architecture for Adaptive,
Work-Centered User Interface Technology," 2006.
Available on-line at
http://ip.com/pubView/IPCOM000134526D

[2] Aragones, Amy, Jeanette Bruno, Andrew Crapo, and Marc
Garbiras, "Using ACUITy to Personalize Content in
Semantic Web Applications," Proceedings of the
Workshop on Personalization and the Semantic Web,
European Semantic Web Conference 2006, forthcoming,
2006.

[3] Aragones, Amy, Jeanette Bruno, Andrew Crapo, and Marc
Garbiras, “An Ontology-Based Architecture for Adaptive
Work-Centered User Interface Technology,” Jena Users
Conference, 2006, forthcoming, 2006.

[4] Miller, Eric, and Jim Hendler, Web Ontology Language
(OWL), 2006. Available on-line at
http://www.w3.org/2004/OWL/

[5] Craik, Kenneth J., The Nature of Explanation, Cambridge
University Press, Cambridge, UK, 1952.

[6] Johnson-Laird, Philip N., Mental Models: Towards a
Cognitive Science of Language, Inference, and
Consciousness, Harvard University Press, Cambridge, MA,
1983.

[7] Johnson-Laird, Philip N., The Computer and the Mind,
Harvard University Press, Cambridge, MA, 1988.

[8] Johnson-Laird, Philip N., Human and Machine Thinking,
Lawrence Erlbaum Associates, Hillsdale, NJ, 1993.

[9] Pan, Barbara, and Jean B. Gleason, Semiotic Development:
Learning the Meanings of Words in The Development of
Language, 4th Edition, Gleason, Jean B. (editor), Allyn and
Bacon, Boston, MA, 1997.

[10] Sowa, John F., Knowledge Representation: Logical,
Philosophical, and Computational Foundations,
Brooks/Cole, Pacific Grove, CA, 2000.

[11] Hoffman, Michael, Is there a “Logic” of Abduction?
Proceedings of the 6th Congress of the IASS-AIS,
International Association for Semantic Studies,
Guadalajara, Mexico, July 13-18, 1997.

[12] Thagard, P. & Shelley, C., Abductive reasoning: Logic,
visual thinking, and coherence. In: M.-L. Dalla Chiara et al
(eds), Logic and Scientific methods. Dordrecht: Kluwer,
1997, pp.413-427.

[13] Baader, Franz, Diego Calvanese, Deborah L. McGuinness,
Daniele Nardi, and Peter F. Patel-Schneider (editors), The
Description Logic Handbook: Theory, Implementation,
and Applications, Cambridge University Press, 2003.

[14] Prud'hommeaux and Andy Seaborne (editors), SPARQL
Query Language for RDF, W3C Candidate
Recommendation of 6 April 2006. Available on-line at
http://www.w3.org/TR/rdf-sparql-query/

http://ip.com/pubView/IPCOM000134526D
http://www.w3.org/2004/OWL/
http://www.w3.org/TR/rdf-sparql-query/

